Working with geospatial data on AWS Ubuntu

I’ve stumbled on different sorts of problems while working with geospatial data on cloud machine. AWS EC2 and Ubuntu sometimes require different setups. This is a quick note for installing GDAL on Ubuntu and how to transfer data from your local machine to your cloud machine without using S3.

To install GDAL

sudo -i
sudo add-apt-repository -y ppa:ubuntugis/ubuntugis-unstable
sudo apt update
sudo apt upgrade # if you already have gdal 1.11 installed
sudo apt install gdal-bin python-gdal python3-gdal # if you don't have gdal 1.11 already installed

To transfer data (SFTP) from your local machine to AWS EC2, you could use FileZilla.

Another option is using S3 with Cyberduck

To set up the environment, please refer to this post and this video.

Artificial intelligence on urban tree species identification 人工智能在市区树种识别上的应用

It doesn’t matter which part of the world you are living now,  very diverse tree species are planted around the urban area we live.  Trees in the urban areas have many functions, for example, trees provide habitats for wildlife, clean air and water, provide significant health and social benefits, and also improve property value too.  Wake up in a beautiful morning that birds are singing outside your apartment because you have many beautiful trees grow outside of your space. How awesome is that!

However, tree planting, survey, and species identification require an enormous amount of work that literally took generations and years of inputs and care. What if we could identify tree species from satellite imagery, how much faster and how well we could get tree species identified and also tell their geolocations as well.

A city has its own tree selection and planting plan, but homeowners have their own tree preference, which the identification work a bit complicated, though.


(Photo from Google Earth Pro June 2010 in Chicago area)

It’s hard to tell now how many tree species are planted in above image. But we could (zoom in and) tell these trees actually have a slightly different shape of tree crown, color, and texture. From here I only need to have a valid dataset basically tell me what tree I am looking at now, which is a tree survey and trees geolocation records from the city. I will be able to teach a computer to select similar features for the species I’m interested in identifying.


These are Green Ash trees (I marked as green dots here).


These are Littleleaf Linden, they are marked as orange dots.

Let me run a Caffe deep learning model (it’s one of the neural networks and also known as artificial intelligence model) for an image classification on these two species, and see if the computer could separate these two species from my training and test datasets.

Great news that the model could actually tell the differences between these two species. I run the model for 300 epochs (runs) from learning rate 0.01 to 0.001 on about 200 images for two species. 75% went to train the model and 25% for testing. The result is not bad that we have around 90% of accuracy (orange line) and less than 0.1 loss on the training dataset.


I threw a random test image to the model (a green ash screenshot in this case) and it tells the result.


I will be working on identifying other 20 trees species and their geolocations next time.

Let’s get some answer what trees are planted in Chicago area and how it related to the property value (an interesting question to ask), and also what ecological benefits and functions these tree are providing (leave this to urban ecologist if my cloud computer could identify the species)? Check my future work ;-).


Start your own Amazon Web Service instance for deep learning怎么样开始建一个你自己的亚马逊深度学习机器

I am back to my blogging life after awhile~ 好久没有写博客,我又回来了!


I’ve been working on image classification and segmentation quite a lot recently, and totally in love with GPU big data processing. If you wanna process data that at gigabyte (G) level data definitely look into start a GPU AWS instance 最近我的工作接触了很多图像分类,和图像分割的内容,感觉自己太爱gpu图像分析的世界:太神速了。如果你现在处理的数据已经达到G级别了,我觉得你还是应该开一个亚马逊的ami(亚马逊的深度学习平台/机器)

It is not free, though. You definitely would start with AWS free tier, but I normally use their g or p machines. For example, if I use g2.2 x large, I will be charged about $0.65 per hour.  for more information, go here. It charges by how much you use and if you are new to deep learning and just wanna run some case studies, I think it worths more than building your own GPU machine or buy a new pc with super GPU.

但是话说回来亚马逊的ami其实也不是免费的。我现在用的机器主要两种p和g。比如我现在一般用的是g2.2 x large,价格大概在0.65美金一个小时。更多的选择可以看这里。我觉得这个还是很有吸引力的,如果你只是想要跑几个学习案例的话,我觉得这个ami非常棒。总之还是比现在才在学习阶段,就买台有gpu的电脑或者建自己的gpu机器学习平台有用。


You should definitely do some research on: 在去开个亚马逊深度学习ami之前,我觉得大家该想想:

  1. What do you wanna do with the AWS machine? Do you wanna learn just some basic machine learning stuffs that you only need to process megabyte (?M) level csv/txt data file you could just use your personal computer. A personal computer is fast enough though days. 你想拿这个亚马逊深度学习平台来做什么?如果只是用来处理几兆几十兆的数据的话,那还是没有必要开一个,现在的个人电脑那么快完全可以处理这些数据了。
  2. As I mentioned above, if you wanna process images or data that above some certain level your personal computer could not handle. Think about how much you wanna spend on the data processing. Again, evaluate your situation, needs and do some research. 但是,如果你的数据量已经是在几百兆或者g级别的,当然还是很有必要开一个的。话说回来,还是应该做些调查研究加上考量自己的情况。

My needs for this personal AWS EC2 machine are: 我需要这个亚马逊ami深度学习平台,主要是想用来做:

  1. Processing big data set on neural network image classification and segmentation;图像分类和图像分割;
  2. A machine that has Tensorflow, Theano, Torch, Keras, and also Caffe installed. Tensorflow, Theano, Torch, and Caffe are deep learning ecosystem/environment. Keras is the python module that I use to build deep learning algorithm architecture.想这个ami机器上有我想用的几个深度学习框架,比如Tensorflow, Theano, Torch, and Caffe。还有如果有keras,python的一个构建深度学习/机器学习的包。

If you are thinking about doing the same things, this is a great blog to start your own AWS AMI Instance here or this one. They both have explicit instructions on how to star the instance.


Second options of launching an AWS AMI with a jupyter notebook server without going through all the AWS web console. Using the following command line in your terminal:


Copy and paste the following command lines (CLI) from above figure.

# create security group
aws ec2 create-security-group –group-name JupyterSecurityGroup –description “My Jupyter security group”

# add security group rules
aws ec2 authorize-security-group-ingress –group-name JupyterSecurityGroup –protocol tcp –port 8888 —cidr
aws ec2 authorize-security-group-ingress –group-name JupyterSecurityGroup –protocol tcp –port 22 —cidr
aws ec2 authorize-security-group-ingress –group-name JupyterSecurityGroup –protocol tcp –port 443 —cidr

# launch instance
aws ec2 run-instances –image-id ami-41570b32 –count 1 –instance-type p2.xlarge –key-name <YOUR_KEY_NAME> –security-groups JupyterSecurityGroup

The next thing would be to configure your Jupyter Notebook Server:


jupyter notebook –generate-config
key=$(python -c “from notebook.auth import passwd; print(passwd())”)

cd ~
mkdir certs
cd certs
openssl req -x509 -nodes -days 365 –newkey rsa:1024 –keyout mycert.key -out mycert.pem

cd ~
sed -i “1 a\
c = get_config()\\
c.NotebookApp.certfile = u’$certdir/mycert.pem’\\
c.NotebookApp.keyfile = u’$certdir/mycert.key’\\
c.NotebookApp.ip = ‘*’\\
c.NotebookApp.open_browser = False\\
c.NotebookApp.password = u’$key’\\
c.NotebookApp.port = 8888″ .jupyter/

These CLI are to create your AWS AMI certificate for Jupyter Notebook server, and then you could run and test out if your jupyter notebook works, after seccessfully run above CLI.

screen -S jupyter
mkdir notebook
cd notebook
jupyter notebook

For more info you could see this blog for details.

If you wanna use Ubuntu AMI instead of Amazon AMI here is another good blog for setting up the jupyter notebook server on the machine