How to use the online map tool for investing in sustainable rubber cultivation in tropical Asia

Please go ahead and play with the full-screen map here.

This map Application is developed to support the Guidelines for Sustainable Development of Natural Rubber, which led by China Chamber of Commerce of Metals, Minerals & Chemicals Importers & Exporters with supports from World Agroforestry Centre, East and Center Asia Office (ICRAF). Asia produces >90% of global natural rubber primarily in monoculture for highest yield in limited growing areas. Rubber is largely harvested by smallholders in remote, undeveloped areas with limited access to markets, imposing substantial labor and opportunity costs. Typically, rubber plantations are introduced in high productivity areas, pushed onto marginal lands by industrial crops and uses and become marginally profitable for various reasons.


Fig. 1. Rubber plantations in tropical Asia. It brings good fortune for millions of smallholder rubber farmers, but it also causes negative ecological and environmental damages.

The online map tool is developed for smallholder rubber farmers, foreign and domestic natural rubber investors as well as different level of governments.  

The online map tool entitled “Sustainable and Responsible Rubber Cultivation and Investment in Asia”, and it includes two main sections: “Rubber Profits and Biodiversity Conservation” and “Risks, SocioEconomic Factors, and Historical Rubber Price”.

The main user interface looks like the graph (Fig 2). There are 4 theme graphs and maps.

p1_section intro

Fig. 2. The main user interface of the online map tool.

. Section 1

This graph tells the correlation between “Minimum Profitable Rubber (USD/kg)” (the x-axis of the graph, and “Biodiversity (total species number)” in 2736 county that planted natural rubber trees in eight countries in tropical Asia.  There are 4312 counties in total, and in this map tool, we only present county that has the natural rubber cultivated.

p1_section intro_high

Fig. 3. How to read and use the data from the first graph. Each dot/circle represents a county, the color, and size of it indicates the area of natural rubber are planted. When you move your mouse closer to the dot, you will see “(2.34, 552) 400000 ha @ Xishuangbanna, China”, 2.34 is the minimum profitable rubber price (USD/kg), 552 is the total wildlife species including amphibians, reptiles, mammals, and birds.  “400000 ha” is the total area of planted natural rubber plantation from satellite images between 2010 and 2013. “@ Xishuangbanna, China” is the geolocation of the county. 

Don’t be shy, please go ahead and play with the full-screen map here. The minimum profitable rubber price is the market price for national standard dry rubber products that would help you to start makes profits. For example, if the market price of natural rubber is 2.0 USD/kg in the county your rubber plantation located, but your minimum profitable rubber price is 2.5 USD/kg means you will lose money by just producing rubber products. However, if your minimum profitable rubber price is 1.5 USD/kg means you will still make about 0.5 USD/kg profit from your plantation.

The county that has a lower minimum profitable price for natural rubber is generally going to make better rubber profit in the global natural rubber market. However, as scientists behind this research, we hope that when you rush to invest and plant rubber in a certain county, please also think about other risks, e.g. biodiversity loss, topographic, tropical storm, frost as well as drought risks. They are going to be shown later in this demonstration. 

p2_section intro_high.gif

Fig. 4.  The first map is the “Rubber Cultivation Area”, which shows the each county that has rubber trees from low to high in colors from yellow to red. The second map “Minimum Profitable Rubber Price”(USD/kg), again the higher the minimum profitable price is the fewer rubber profits that farmers and investors are going to receive. The third map is ” Biodiversity (Amphibians, Reptiles, Mammals, and Birds)”,  data was aggregated from IUCN-Redlist and BirdLife International.

. Section 2

We also demonstrated different types of risks that investors and smallholder farmers would face when they invest and plant rubber trees. Rubber tree doesn’t produce rubber latex before 7 years old, and the tree owners won’t make any profit until the tree is around 10 years old in general. In this section, we presented “Topographic Risk”, ” Tropical Storm”, “Drought Risk”,  and “Frost Risk”.

p3_section intro_high.gif

Fig. 5. Section 2 ” Risks, SocioEconomic Factors and Historical Rubber Price” has seven different theme maps and interactive graphs. They are “Topographic Risk”, ” Tropical Storm”, “Drought Risk”,  and “Frost Risk”, “Average Natural Rubber Yield (kg/ha.year)”, “Minimum Wage for the 8 Countries (USD/day)”, and ” 10 years Rubber price”.

If you are interested in how the risk theme maps were produced, Dr. Antje Ahrends and her other coauthors have a peer-reviewed article published in Global Environmental Change in 2015.  “Average Natural Rubber Yield (kg/ha.year)” and “Minimum Wage for the 8 Countries (USD/day)” dataset was obtained from  International Labour Organization (ILO, 2014)  and FAO.” 10 years Rubber price” was scraped from  IndexMudi Natural Rubber Price.

Dr. Chuck Cannon and I are wrapping up a peer-reviewed journal article to explain the data collection, analysis, and policy recommendations based on the results, and we will share the link to the article once it’s available. Dr. Xu Jianchu and Su Yufang have shaped and provided guidance to shape the online map tool development. We could not gather the datasets and put insights to see how we could cultivate, manage, and invest in natural rubber responsibly without other scientists and researchers study and contribute to field for years. We appreciated Wildlife Conservation Society, many other NGOs and national department of rubber research in Thailand and Cambodia for their supports during our field investigation in 2015 and 2016.

We have two country reports for natural rubber in Thailand, and natural rubber and land conflict in Cambodia, a report support this online map tool is finalizing and we will share the link soon when it’s ready.


Technical sides

The research and analysis were done in R, and you could find my code here.

The visualization is purely coded in R too, isn’t R is such an awesome language? You could see my code for the visualization here.

To render geojson format of multi-polygon, you should use:

county_json_simplified <- ms_simplify(<your geojson file>)

My original geojson for 4000+ county weights about 100M but this code have help to reduce it to 5M, and it renders much faster on

I learnt a lot from this blog on manipulating geojson with R and another blog on using flexdashboard in R for visualization. Having an open source and general support from R users are great.

The natural rubber value chain and foreign investments in Thailand: how can we achieve sustainable and responsible rubber cultivation and investment?

I have an opportunity worked for Chinese Ministry of Commerce with ICRAF last fall, and have been studying natural rubber value chain since then. I led four technic reports on natural rubber value chain: the first report is for Thailand natural rubber value chain (please see the title);the second one  is about natural rubber value chain, foreign investments and land conflicts in Cambodia; the third report is the a comparison study between Thailand and Cambodia, the biggest natural rubber producer and the emerging rubber producer; the last report will concentrate on the risks of natural rubber cultivation and investment in Asia, from geosnatially perspectives. As I mentioned in the reports that there are no winner in the natural rubber value chain: we lost biodiversity and ecosystem services from covering natural forests to rubber monoculture (upstream of the value chain); and emitted million tons of polluted air and water, and carbon dioxide back to nature from rubber processing (the midstream); at the end, without sustainable livelihood for the poor who grows rubber; and limited competitiveness in the end products market (the downstream). We should go back the source and really think about how we can improve the whole value chain, and why.

The following content is the abstract of Thailand report in English. These reports are in Chinese recently, if you are interested in the content please contact Dr. Zhuang-Fang Yi, and

Upper Mekong Region

Figure 1. The great Mekong region and also the global nature rubber producers. 

Asia supplies 93% of natural rubber demand globally. As the world No.1 natural rubber producer, Thailand has exported nearly 40% of global rubber production demands, which is 87% of its domestic rubber production. The production improvement in Thailand is not only depending on its biophysical suitability of rubber growing, but also relying on its policy supports and subsidies to millions of upstream rubber farmers. Thailand has spent about 21.3billion Baht (586million USD) from Sep. 2013 to Mar. 2014 to subsidize its rubber farmers while the price of natural rubber went down. However, lack of manufacturing and financial supports for its midstream and downstream of the natural rubber value chain, Thailand highly depends on rubber exporting to other countries, e.g. China, US, EU and Japan.

The long history of natural rubber cultivation and supports from Thai government has grown Thai rubber farmers a better rubber economic resilience cultivation systems, which is rubber agroforestry. Rubber agroforestry is a rather complex intercropping system compare to rubber monoculture. Rubber monoculture refers to the rubber plantations that only have rubber trees, and other plant species has been killed and get rids constantly by using herbicide and manual clearance. Rubber agroforestry sustains better ecosystem services and also bring more economic returns. But the labour requirement and knowledge gaps from rubber monoculture to rubber agroforestry are the main constrains for a greener cultivation system. It means rubber farmers only need to intensively take care rubber trees in rubber monoculture system, but need other knowledge and time inputs for rubber agroforestry. However, there are about 21 intercropping systems and more than 300 farms are practicing the intercropped rubber agroforestry by the rubber famers without authority supports like rubber monoculture in Thailand. Urgent research and institution support are need for rubber agroforestry in Thailand and globally.

The merging economies and natural rubber producer countries, e.g. Vietnam, Cambodia, Laos, and Myanmar in Mekong region, are following Thailand’s foot steps, only practicing rubber monoculture, that highly support its upstream value chain but lack of rubber manufacturing and supporting financing systems for mid-stream and downstream. It leads to heavily depend on Chinese and the rest of world rubber demands. It leads to very weak economic resilience for millions of smallholding rubber farmers when the price goes down. In China market, rubber price dropped from 6.3USD/kg to less than a dollar in 2014. China, as the biggest natural rubber importer, consuming nearly 40% of global rubber supply. On the other hand, 20% of imported taxes are charged and have dramatically increased the cost of rubber end products, and loss its global competitiveness in the natural rubber market. There are no winner in the natural rubber value chain: we lost biodiversity and ecosystem services from covering natural forests to rubber monoculture (upstream of the value chain); and emitted million tons of polluted air and water, and carbon dioxide back to nature from rubber processing (the midstream); at the end, without sustainable livelihood for the poor who grows rubber; and limited competitiveness in the end products market (the downstream). We should go back the source and really think about how we can improve the whole value chain, and why.

While more and more Chinese state-owned and private enterprises follow “Go Global” strategy by Chine central government who have heavily invested outside of China. Natural rubber end products, especially tires industry is one of them. In this reports, we scrutinized the natural rubber value chain in Thailand and its foreign investments , especially Chinese investments. We tried to answer:

  1. If there are the best rubber cultivation systems that combine economic returns and a better ecosystem services supporting system;
  2. The relationship between Chinese investors and Thai natural rubber value chain;
  3. The possible ways of sustainable and responsible rubber cultivation and investment.

Coming reports in Chinese


Figure 2. Thailand as the biggest rubber producer, produce 4.5millions ton of natural rubber, and 80% of Thailand domestic natural rubber is from Southern Thailand. Each polygon represents of a province in the map and the darker of the color represents the bigger area of rubber cultivation.